Vav Proteins Are Key Regulators of Card9 Signaling for Innate Antifungal Immunity
نویسندگان
چکیده
Fungal infections are major causes of morbidity and mortality, especially in immunocompromised individuals. The innate immune system senses fungal pathogens through Syk-coupled C-type lectin receptors (CLRs), which signal through the conserved immune adaptor Card9. Although Card9 is essential for antifungal defense, the mechanisms that couple CLR-proximal events to Card9 control are not well defined. Here, we identify Vav proteins as key activators of the Card9 pathway. Vav1, Vav2, and Vav3 cooperate downstream of Dectin-1, Dectin-2, and Mincle to engage Card9 for NF-κB control and proinflammatory gene transcription. Although Vav family members show functional redundancy, Vav1/2/3-/- mice phenocopy Card9-/- animals with extreme susceptibility to fungi. In this context, Vav3 is the single most important Vav in mice, and a polymorphism in human VAV3 is associated with susceptibility to candidemia in patients. Our results reveal a molecular mechanism for CLR-mediated Card9 regulation that controls innate immunity to fungal infections.
منابع مشابه
Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity
Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate a...
متن کاملSyk Kinase-Coupled C-type Lectin Receptors Engage Protein Kinase C-δ to Elicit Card9 Adaptor-Mediated Innate Immunity
C-type lectin receptors (CLRs) that couple with the kinase Syk are major pattern recognition receptors for the activation of innate immunity and host defense. CLRs recognize fungi and other forms of microbial or sterile danger, and they induce inflammatory responses through the adaptor protein Card9. The mechanisms relaying CLR proximal signals to the core Card9 module are unknown. Here we demo...
متن کاملC-type lectin receptors differentially induce th17 cells and vaccine immunity to the endemic mycosis of North America.
Vaccine immunity to the endemic mycoses of North America requires Th17 cells, but the pattern recognition receptors and signaling pathways that drive these protective responses have not been defined. We show that C-type lectin receptors exert divergent contributions to the development of antifungal Th17 cells and vaccine resistance against Blastomyces dermatitidis, Histoplasma capsulatum, and C...
متن کاملThe role of Syk/CARD9 coupled C-type lectins in antifungal immunity
Fungal infections are affecting an increasing number of people, and the failure of current therapies in treating systemic infection has resulted in an unacceptably high mortality rate. It is therefore of importance that we understand immune mechanisms operating during fungal infections, in order to facilitate development of adjunctive immunotherapies for the treatment of these diseases. C-type ...
متن کاملCard9‐dependent IL‐1β regulates IL‐22 production from group 3 innate lymphoid cells and promotes colitis‐associated cancer
Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell-specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL-1β p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2016